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1 Introduction

Neural	machine	 translation	（NMT）,	 a	 new	

approach	to	solving	machine	 translation,	has	

achieved	 promising	 results[8][1].	 However,	 a	

conventional	NMT	 is	 limited	when	 it	 comes	

to	 larger	 vocabularies.	 This	 is	 because	 the	

training	complexity	and	decoding	complexity	

proportionally	 increase	 with	 the	 number	 of	

target	words.	Words	that	are	out	of	vocabulary	

are	 represented	by	a	single	unknown	token	 in	

translations.	The	problem	becomes	more	serious	

when	translating	patent	documents,	which	contain	

several	 newly	 introduced	 technical	 terms.	

There	have	been	a	number	of	 related	studies	

that	address	the	vocabulary	 limitation	of	NMT	

systems.	Among	them,	Luong	et	al.[5]	proposed	

annotating	the	occurrences	of	a	target	unknown	

word	token	with	positional	 information	to	track	

its	alignments,	 after	which	 they	 replace	 the	

tokens	with	their	translations	using	simple	word	

dictionary	 lookup	or	 identity	 copy.	However,	

this	previous	approach	has	 limitations	when	

translating	patent	sentences.	This	 is	because	

Patent�NMT�integrated�with�Large�
Vocabulary�Phrase�Translation�by�SMT

Takehito Utsuro

Zi Long

Ryuichiro Kimura

Mikio Yamamoto

Division of Intelligent Interaction Technologies, Faculty of Engineering, Information and Systems, University of Tsukuba

Department of Intelligent Interaction Technologies, Graduate School of Systems and Information Engineering, University of Tsukuba

Department of Intelligent Interaction Technologies, Graduate School of Systems and Information Engineering, University of Tsukuba

Division of Information Engineering, Faculty of Engineering, Information and Systems, University of Tsukuba

Takehito Utsuro is a professor at the Division of Intelligent Interaction 
Technologies, Faculty of Engineering, Information and Systems, University of 
Tsukuba, since 2012. His professional interests in natural language processing, 
Web intelligence, information retrieval, machine learning, spoken language 
processing, and artificial intelligence.

Zi Long is a student of doctor course in Department of Intelligent Interaction 
Technologies, Graduate School of Systems and Information Engineering, 
University of Tsukuba.

Ryuichiro Kimura is a student of master course in Department of Intelligent 
Interaction Technologies, Graduate School of Systems and Information Engineering, 
University of Tsukuba.

Mikio Yamamoto is a professor at the Division of Information Enginieering, 
Faculty of Engineering, Information and Systems, University of Tsukuba, since 
2008. His professional interests in natural language processing and machine 
translation.



291YEAR BOOK 2O17

機
械
翻
訳
技
術
の
向
上

4

their	method	only	 focuses	on	addressing	 the	

problem	of	 unknown	words	even	 though	 the	

words	are	parts	of	technical	terms.	It	is	obvious	

that	 a	 technical	 term	should	 be	considered	

as	one	word	that	comprises	components	that	

always	have	different	meanings	and	translations	

when	they	are	used	alone.

In	this	article,	we	present	a	method	that	enables	

NMT	to	translate	patent	sentences	with	a	large	

vocabulary	of	technical	terms.	We	use	an	NMT	

model	similar	to	that	used	by	Bahdanau	el	al.[1],	

and	train	the	NMT	model	on	a	bilingual	corpus	

in	which	the	technical	terms	are	replaced	with	

technical	term	tokens;	this	allows	it	to	translate	

most	of	the	source	sentences	except	technical	

terms.	Similar	 to	Bahdanau	et	al.[1],	we	use	 it	

as	a	decoder	 to	 translate	source	sentences	

with	 technical	 term	 tokens	and	 replace	 the	

tokens	with	technical	 term	translations	using	

statistical	machine	translation	（SMT）[3][4].

2 Neural Machine Translation

NMT	uses	a	single	neural	network	trained	jointly	

to	maximize	 the	 translation	performance[8][1].	

Given	a	source	sentence	x	（x＝x1,	…xN）	and	target	

sentence	y	（y＝y1,	…yM）,	an	NMT	model	uses	a	

neural	network	to	parameterize	the	conditional	

distributions

p（yz	|	y＜z,	x）

for	1 z M.	Consequently,	 it	becomes	possible	

to	compute	and	maximize	the	 log	probability	of	

the	target	sentence	given	the	source	sentence	

as

p（y	|	x）＝
M

∑
z＝1

log（yz	|	y＜z,	x）

In	this	article,	we	use	an	NMT	model	similar	to	

that	used	by	Bahdanau	et	al.[1],	which	consists	

of	an	encoder	of	a	bidirectional	 long	short-term	

memory	（LSTM）		and	another	LSTM	as	decoder.	

In	the	model	of	Bahdanau	et	al.[1],	 the	encoder	

consists	of	 forward	and	backward	LSTMs.	The	

forward	LSTM	 reads	 the	source	sentence	as	

it	 is	ordered	（from	x1	 to	xN）	and	calculates	a	

sequence	of	 forward	hidden	states,	while	 the	

backward	LSTM	reads	the	source	sentence	 in	

the	 reverse	order	（from	xN	 to	x1）,	 resulting	 in	

a	sequence	of	backward	hidden	states.	The	

decoder	 then	predicts	target	words	using	not	

only	a	recurrent	hidden	state	and	the	previously	

predicted	word	but	also	a	context	 vector	as	

followings:

p（yz	|	y＜z,	x）＝g（yz－1,	sz－1,	cz）

where	sz－1	is	an	LSTM	hidden	state	of	decoder,	

and	cz	 is	a	context	vector	computed	from	both	

of	the	forward	hidden	states	and	backward	hidden	

states,	for	1 z M.

3
NMT with a Large Technical Term 
Vocabulary

3.1　�NMT� Training� after� Replacing�
Technical�Term�Pairs�with�Tokens

Figure	 1	 illustrates	 the	 procedure	 of	 the	

training	model	with	parallel	patent	sentence	

pairs,	wherein	 technical	 terms	are	 replaced	

with	technical	 term	tokens	 “TT1”,	 “TT2”,	….1	 In	

the	step	1	of	 Figure	1,	we	align	 the	source	

technical	 terms,	 which	 are	 automatically	

extracted	from	the	source	sentences,	with	their	

1	 In	 this	 work,	 we	 approximately	 regard	 all	 the	
Japanese	compound	nouns	as	source	technical	
terms.	 These	 Japanese	 compound	 nouns	 are	
automatically	extracted	by	simply	concatenating	
a	sequence	of	morphemes	whose	parts	of	speech	
are	 either	 nouns,	 prefixes,	 suffixes,	 unknown	
words,	numbers,	or	alphabetical	characters.	Here,	
morpheme	 sequences	 starting	 or	 ending	 with	
certain	prefixes	are	 inappropriate	as	Japanese	
technical	terms	and	are	excluded.	The	sequences	
that	include	symbols	or	numbers	are	also	excluded.	
In	target	side,	on	the	other	hand,	we	regard	target	
translations	of	 extracted	Japanese	compound	
nouns	as	target	technical	terms,	where	we	do	not	
regard	other	target	phrases	as	technical	terms.
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target	 translations	 in	 the	 target	sentences.2	

As	shown	in	the	step	2	of	Figure	1,	 in	each	of	

source-target	parallel	patent	sentence	pairs,	

occurrences	of	technical	term	pairs	〈tS
1,	tT

1〉,	〈tS
2,	

tT
2〉,	…,	〈tS

k,	tT
k〉	are	then	replaced	with	technical	

term	 tokens	〈TT1,	TT1〉,	〈TT2,	TT2〉,	…,	〈TTk,	

TTk〉.	Technical	term	pairs	〈tS
1,	 tT

1〉,	〈tS
2,	 tT

2〉,	…,	

〈tS
k,	tT

k〉	are	numbered	in	the	order	of	occurrence	

of	source	technical	 terms	tS
i	（i＝1,	2,	…,	k）	 in	

each	source	sentence	SS.	Here,	note	that	in	all	

the	parallel	sentence	pairs	〈SS, ST〉,	 technical	

term	tokens	 “TT1”,	 “TT2”,	…	that	are	 identical	

throughout	all	 the	parallel	sentence	pairs	are	

used	in	this	procedure.	Therefore,	for	example,	in	

all	the	source	patent	sentences	SS,	the	source	

technical	 term	 tS
1	which	appears	earlier	 than	

other	source	technical	terms	 in	SJ	 is	 replaced	

with	TT1.	We	then	train	the	NMT	system	on	a	

bilingual	corpus,	 in	which	 the	 technical	 term	

pairs	 is	replaced	by	“TTi”	（i＝1,	2,	…,	k）	tokens	

and	obtain	an	NMT	model	in	which	the	technical	

terms	 are	 represented	 as	 technical	 term	

tokens.3

3.2　�NMT�Decoding�and�SMT�Technical�
Term�Translation

Figure	2	illustrates	the	procedure	for	producing	

2	 Details	of	 the	procedure	of	 identifying	technical	
term	pairs	 in	the	bilingual	corpus	can	be	found	 in	
the	work	of	Long	et	al.[3].

3	 We	treat	the	NMT	system	as	a	black	box,	and	the	
strategy	we	present	in	this	article	could	be	applied	
to	any	NMT	system.	[7][1]

target	 translations	 via	decoding	 the	source	

sentence	using	the	method	presented	 in	 this	

aritcle.	In	the	step	1	of	Figure	2,	when	given	an	

input	source	sentence,	we	 first	automatically	

extract	the	technical	 terms	and	 replace	them	

with	the	technical	term	tokens	“TTi”	（i＝1,	2,	…,	

k）.	Consequently,	we	have	an	input	sentence	in	

which	the	technical	term	tokens	“TTi”	（i＝1,	2,	

…,	k）	represent	the	positions	of	 the	technical	

terms	and	a	 list	of	extracted	source	technical	

terms.	Next,	as	shown	in	the	step	2-N	of	Figure	

2,	 the	source	sentence	with	 technical	 term	

tokens	 is	 translated	 using	 the	 NMT	 model	

trained	according	 to	 the	procedure	described	

in	Section	3.1,	whereas	the	extracted	source	

technical	 terms	are	 translated	using	an	SMT	

phrase	 translation	 table	 in	 the	 step	 2-S	 of	

Figure	2.4	Finally,	 in	the	step	3,	we	replace	the	

technical	term	tokens	“TTi”	（i＝1,	2,	…,	k）	of	the	

sentence	 translation	with	SMT	the	 technical	

term	translations.

4	 We	use	the	translation	with	the	highest	probability	
in	 the	phrase	 translation	 table.	When	an	 input	
source	 technical	 term	has	multiple	 translations	
with	 the	 same	 highest	 probability	 or	 has	 no	
translation	 in	 the	phrase	 translation	 table,	we	
apply	 a	 compositional	 translation	 generation	
approach,	wherein	target	translation	 is	generated	
compositionally	 from	the	constituents	of	source	
technical	terms.

Figure 1　NMT training after replacing technical term pairs with tokens “TT1”, “TT2”, ⋯

〔3〕 

sequence of forward hidden states, while the 

backward LSTM reads the source sentence in the 
reverse order (from ��  to �� ) , resulting in a 
sequence of backward hidden states. The decoder 
then predicts target words using not only a 
recurrent hidden state and the previously 
predicted word but also a context vector as 
followings: 

��������� �	� � ������� ����� ��� 
where ���� is an LSTM hidden state of decoder, 
and �� is a context vector computed from both of 
the forward hidden states and backward hidden 
states, for � � � � �. 
 
3. NMT with a Large Technical Term Vocabulary 
3.1 NMT Training after Replacing Technical Term 
Pairs with Tokens 

Figure 1 illustrates the procedure of the 
training model with parallel patent sentence 
pairs, wherein technical terms are replaced with 
technical term tokens “���”, “���”, ⋯.1 In the step 
                                                  
1 In this work, we approximately regard all the Japanese 
compound nouns as source technical terms. These Japanese 
compound nouns are automatically extracted by simply 

1 of Figure 1, we align the source technical terms, 

which are automatically extracted from the source 
sentences, with their target translations in the 
target sentences. 2  As shown in the step 2 of 
Figure 1, in each of source-target parallel patent 
sentence pairs, occurrences of technical term 
pairs 〈���� ���〉,	〈���� ���〉, ⋯, 〈���� ���〉 are then replaced 
with technical term tokens 〈���� ���〉, 〈���� ���〉, 
⋯, 〈���� ���〉. Technical term pairs 〈���� ���〉,	〈���� ���〉, 
⋯ , 〈���� ���〉  are numbered in the order of 
occurrence of source technical terms ��� 	�� �
����⋯ � �� in each source sentence ��. Here, note 
that in all the parallel sentence pairs 〈��� ��〉 , 
technical term tokens “���”, “���”, ⋯ that are 
identical throughout all the parallel sentence 

                                                                                
concatenating a sequence of morphemes whose parts of speech 
are either nouns, prefixes, suffixes, unknown words, numbers, 
or alphabetical characters. Here, morpheme sequences 
starting or ending with certain prefixes are inappropriate as 
Japanese technical terms and are excluded. The sequences 
that include symbols or numbers are also excluded. In target 
side, on the other hand, we regard target translations of 
extracted Japanese compound nouns as target technical terms, 
where we do not regard other target phrases as technical 
terms. 

2 Details of the procedure of identifying technical term pairs 
in the bilingual corpus can be found in the work of Long et 
al.[3]. 

Japanese sentence:
cmac/ユニット/312/は/信号/を/ブリッジ/インタフェース

/388/に/提供/する/。

Chinese sentence:

cmac/单元/312/将/信号/提供/给/桥架/接口/388/。

Japanese sentence with technical 
term tokens “TT1”, “TT2” :
TT1  /312/は/信号/を/TT2/388/に/提供/する/。

Chinese sentence with tec hnical
ter m tokens “TT1”, “TT2” :
TT1 /312/将/信号/提供/给/TT2 /388/。

NMT translation 
model (with 

technical term tokens 
“TT1”, “TT2”, …)

(cmac unit 312 provides a signal to the bridge interface 388.) (TT1 312 provides a signal to the TT2 388.)

1. aligning technical term 
pairs by SMT translation model 

2.  replacing each aligned technical 
term pair with an identical technical‐

term token “TTi” (i = 1, 2, …)

3.  training 
by NMT

 
Figure 1 NMT training after replacing technical term pairs with tokens “���”, “���”, ⋯ 



293YEAR BOOK 2O17

機
械
翻
訳
技
術
の
向
上

4

4 Evaluation

4.1　Patent�Documents
Japanese-Chinese	parallel	patent	documents	

were	 collected	 from	 the	 Japanese	 patent	

documents	published	by	the	Japanese	Patent	

Office	（JPO）	 during	 2004-2012	 and	 the	

Chinese	patent	documents	published	by	 the	

State	Intellectual	Property	Office	of	the	People's	

Republic	of	China	（SIPO）	during	2005-2010.	

From	the	collected	documents,	we	extracted	

312,492	patent	 families,	and	 the	method	of	

Uchiyama	and	 Isahara[9]	was	applied5	 to	 the	

text	of	 the	extracted	patent	 families	 to	align	

the	 Japanese	 and	 Chinese	 sentences.	 The	

Japanese	sentences	were	segmented	 into	a	

sequence	of	morphemes	using	 the	Japanese	

morphological	analyzer	MeCab6	with	the	morpheme	

lexicon	IPAdic,7	and	the	Chinese	sentences	were	

segmented	 into	a	 sequence	of	words	using	

the	Chinese	morphological	analyzer	Stanford	

Word	Segment[10]	 trained	using	 the	Chinese	

Penn	Treebank.	In	this	study,	Japanese-Chinese	

parallel	patent	sentence	pairs	were	ordered	 in	

descending	order	of	sentence-alignment	score	

and	we	used	the	 topmost	2.8M	pairs,	whose	

5	 Herein,	we	used	a	Japanese-Chinese	translation	
lexicon	 comprising	 around	 170,000	 Chinese	
entries.

6	 http://mecab.sourceforge.net/

7	 http://sourceforge.jp/projects/ipadic/

Japanese	sentences	contain	 fewer	 than	40	

morphemes	and	Chinese	sentences	contain	

fewer	than	40	words.8

Japanese-English	 patent	 documents	 are	

provided	 in	 the	NTCIR-7	workshop[11],	which	

are	collected	from	the	10	years	of	unexamined	

Japanese	patent	applications	published	by	the	

Japanese	Patent	Office	（JPO）	and	the	10	years	

patent	grant	data	published	by	the	U.S.	Patent	

Trademark	 Office	（USPTO）	 in	 1993-2000.	

The	numbers	of	documents	are	approximately	

3,500,000	 for	Japanese	and	1,300,000	 for	

English.	 From	 these	document	sets,	 patent	

families	are	automatically	extracted	and	the	fields	

of	 “Background	of	the	 Invention”	and	“Detailed	

Description	 of	 the	 Preferred	 Embodiments”	

are	selected.	Then,	 the	method	of	Uchiyama	

and	 Isahara[9]	 is	applied	 to	 the	 text	of	 those	

fields,	and	Japanese	and	English	sentences	

are	 aligned.	 The	 Japanese	 sentences	 were	

segmented	 into	 a	 sequence	 of	 morphemes	

using	 the	 Japanese	morphological	 analyzer	

MeCab	 with	 the	 morpheme	 lexicon	 IPAdic.	

Similar	to	the	case	of	Japanese-Chinese	patent	

8	 It	 is	expected	that	our	NMT	model	can	 improve	
the	baseline	NMT	without	 our	 technique	when	
translating	 longer	sentences	 that	contain	more	
than	40	morphemes	/	words.	 It	 is	because	 the	
approach	of	 replacing	phrases	with	 tokens	also	
shortens	 the	 input	 sentences,	 expected	 to	
contribute	to	solving	the	weakness	of	NMT	model	
when	translating	long	sentences.

Figure 2　NMT decoding with technical term tokens “TTi” （i＝1, 2, ⋯, k） and SMT technical term

〔4〕 

pairs are used in this procedure. Therefore, for 
example, in all the source patent sentences , 
the source technical term  which appears 
earlier than other source technical terms in  is 
replaced with . We then train the NMT system 
on a bilingual corpus, in which the technical term 
pairs is replaced by “ ”  tokens 
and obtain an NMT model in which the technical 
terms are represented as technical term tokens.3 
 
3.2 NMT Decoding and SMT Technical Term 
Translation 
Figure 2 illustrates the procedure for producing 
target translations via decoding the source 
sentence using the method presented in this 
aritcle. In the step 1 of Figure 2, when given an 
input source sentence, we first automatically 
extract the technical terms and replace them with 
the technical term tokens “ ” . 

                                                  
3 We treat the NMT system as a black box, and the strategy 

we present in this article could be applied to any NMT system. 
[7][1] 

Consequently, we have an input sentence in which 
the technical term tokens “ ”  
represent the positions of the technical terms and 
a list of extracted source technical terms. Next, as 
shown in the step 2-N of Figure 2, the source 
sentence with technical term tokens is translated 
using the NMT model trained according to the 
procedure described in Section 3.1, whereas the 
extracted source technical terms are translated 
using an SMT phrase translation table in the step 
2-S of Figure 2.4 Finally, in the step 3, we replace 
the technical term tokens “ ”  of 
the sentence translation with SMT the technical 
term translations. 
 
4. Evaluation 
4.1 Patent Documents 
                                                  

4 We use the translation with the highest probability in the 
phrase translation table. When an input source technical term 
has multiple translations with the same highest probability or 
has no translation in the phrase translation table, we apply a 
compositional translation generation approach, wherein target 
translation is generated compositionally from the constituents 
of source technical terms. 

input Japanese sentence:
コンタクト/プラグ/9/d/と/

素子/分離/絶縁/膜/2/の/
間/に/は/金属/膜/14/が/
介在/し/て/いる 。

(The metal film 14 is interposed 
between the contact plug 9d and the 
element  isolation insulating film 2.)

2-S.  technical 
term translation

by phrase 
translation 
table of SMT

output Chinese  translation:

在/接触/插头/9/d/和/
元件/分离/绝缘/膜/2/
之间/夹/着/金属膜/14/。

1. replacing them with 
technical 

term tokens 
“TT1”, “TT2”, … 

TT1  : コンタクト/プラグ

TT2  :素子/分離/絶縁 /膜

TT3  :金属/膜
(metal film) 

(contact plug)

(element  isolation insulating film) 

input Japanese sentence 
with technical term tokens 
“TT1”, “TT2”, … :
TT1 /9/d/と/ TT2  /2/の/間/に/は
/ TT3  /14/が/介在/し/て/いる 。

Chinese translation with 
Technical term tokens 
“TT1”, “TT2”, … :

(The TT3 14 is interposed between the TT1 
9d and the TT2 2.)

在/TT1 /9/d/和/TT2 /2/之
间/夹/着/TT3 /14/。

2-N.  decoding by 
NMT translation 
model (with 

technical term tokens 
“TT1”, “TT2”, … )

extracted Japanese technical terms

TT1  : 接触/插头

TT2  : 素子/分離/絶縁/膜

TT3  : 金属膜

Chinese translation of technical terms

3. replacing 
technical term 
tokens “TT1”, 
“TT2”, … with 
technical term 
translation by 

SMT

 

Figure 2 NMT decoding with technical term tokens “ ”  and SMT technical term 
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documents,	 in	 this	study,	out	of	 the	provided	

1.8M	 Japanese-English	 parallel	 sentences,	

1.1M	 parallel	 sentences	 whose	 Japanese	

sentences	contain	 fewer	than	40	morphemes	

and	English	sentences	contain	 fewer	than	40	

words	are	used.

4.2　Training�and�Test�Sets
We	evaluated	the	effectiveness	of	 the	NMT	

model	presented	 in	 this	article	at	 translating	

parallel	patent	sentences	described	 in	Section	

4.1.	 Among	 the	 selected	 parallel	 sentence	

pairs,	we	 randomly	extracted	1,000	sentence	

pairs	for	the	test	set	and	1,000	sentence	pairs	

for	 the	validation	set;	 the	 remaining	sentence	

pairs	were	used	 for	 the	 training	set.	Table	1	

shows	statistics	of	the	datasets.	

Table 1　Statistics of datasets

training
set

validation
set

test
set

ja ↔ ch 2,877,178 1,000 1,000
ja ↔ en 1,167,198 1,000 1,000

4.3　Training�Details
For	the	training	of	the	SMT	model,	 including	

the	word	alignment	and	the	phrase	translation	

table,	we	used	Moses[2],	 a	 toolkit	 for	phrase-

based	 SMT	 models.	 We	 trained	 the	 SMT	

model	on	the	training	set	and	tuned	it	with	the	

validation	set.

For	the	training	of	the	NMT	model,	our	training	

procedure	and	hyperparameter	choices	were	

similar	 to	 those	 of	 Bahdanau	 et	 al.[1].	 The	

encoder	consists	of	forward	and	backward	deep	

LSTM	neural	networks	each	consisting	of	three	

layers,	with	512	cells	in	each	layer.	The	decoder	

is	a	 three-layer	deep	LSTM	with	512	cells	 in	

each	 layer.	Both	 the	source	 vocabulary	 and	

the	 target	vocabulary	are	 limited	 to	 the	40K	

most-frequently	used	morphemes/words	 in	the	

training	set.	The	size	of	 the	word	embedding	

was	set	to	512.	We	ensured	that	all	sentences	

in	a	minibatch	were	 roughly	 the	same	 length.	

Further	training	details	are	given	below:

（1）	We	set	the	size	of	a	minibatch	to	128.

（2）	All	of	the	LSTMʼs	parameter	were	initialized	

with	a	uniform	distribution	ranging	between	

－0.06	and	0.06.

（3）	We	used	the	stochastic	gradient	descent,	

beginning	at	a	 fixed	 learning	rate	of	1.	We	

trained	our	model	 for	a	total	of	10	epochs,	

and	we	began	 to	halve	 the	 learning	 rate	

every	epoch	after	the	first	seven	epochs.

（4）	Similar	to	Sutskever	et	al.[8],	we	rescaled	the	

normalized	gradient	to	ensure	that	its	norm	

does	not	exceed	5.

We	trained	the	NMT	model	on	the	training	set.	

The	 training	time	was	around	two	days	when	

using	 the	described	parameters	on	a	1-GPU	

machine.

4.4　Evaluation�Results
We	calculated	automatic	evaluation	scores	

for	 the	 translation	 results	 using	 a	 metric	

called	BLEU[7].	As	shown	 in	Table	2,	we	report	

the	 evaluation	 scores,	 on	 the	 basis	 of	 the	

translations	by	Moses[2],	as	the	baseline	SMT.9	

and	the	scores	based	on	translations	produced	

by	 the	 equivalent	 NMT	 system	 without	 our	

approach	as	 the	baseline	NMT.	As	shown	 in	

Table	2,	our	NMT	systems	clearly	 improve	the	

translation	 quality	when	compared	with	 the	

baselines.	When	compared	with	 the	baseline	

SMT,	 the	performance	gain	of	our	system	 is	

approximately	6.1	BLEU	points	when	translating	

Japanese	 into	Chinese	and	8.4	BLEU	when	

translating	Japanese	into	English.	When	compared	

with	 the	 result	of	decoding	with	 the	baseline	

NMT,	our	NMT	system	achieved	performance	

gains	 of	 2.1	BLEU	points	when	 translating	

9	 We	train	the	SMT	system	on	the	same	training	set	
and	tune	it	with	the	validation	set.
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Japanese	 into	Chinese,	and	0.8	BLEU	points	

when	translating	Japanese	into	English.

Furthermore,	we	quantitatively	compared	our	

study	with	 the	work	of	Luong	et	al.[5].	As	 the	

result	shown	in	Table	2,	compared	with	the	NMT	

system	with	PosUnk	model	 that	 is	proposed	

as	the	best	model	by	Luong	et	al.[5],	our	NMT	

system	 achieves	 performance	 gains	 of	 1.7	

BLEU	points	when	 translating	Japanese	 into	

Chinese	and	0.6	BLEU	points	when	translating	

Japanese	into	English.

In	 this	study,	we	also	conducted	 two	types	

of	human	evaluation	according	 to	Nakazawa	

et	al.[6]:	pairwise	evaluation	and	JPO	adequacy	

evaluation.10	Table	3	shows	the	results	of	the	

human	evaluation	 for	 the	baseline	SMT,	 the	

baseline	NMT,	the	NMT	system	with	PosUnk[5]	

and	our	NMT	system.	We	observed	 that	our	

systems	achieved	 the	best	performance	 for	

both	pairwise	evaluation	and	JPO	adequacy	

evaluation.

10	https://www.jpo.go.jp/shiryou/toushin/chousa/
pdf/tokkyohonyaku_hyouka/01.pdf		（in	Japanese）

5 Conclusion

In	this	article,	we	presented	an	NMT	method	

capable	of	translating	patent	sentences	with	a	

large	vocabulary	of	technical	terms	by	training	

an	NMT	system	on	a	bilingual	corpus,	wherein	

technical	terms	are	replaced	with	technical	term	

tokens.	For	the	translation	of	Japanese	patent	

sentences,	we	observed	that	our	NMT	system	

performs	better	 than	 the	phrase-based	SMT	

system	as	well	as	the	equivalent	NMT	system	

without	our	approach.	

Table 2　Automatic evaluation results （BLEU）

System ja → ch ja → en
Baseline SMT[2] 52.5 32.3
Baseline NMT 56.5 39.9
NMT with PosUnk model[5] 56.9 40.1
NMT with technical term
translation by SMT 58.6 40.7

Table 3　 Human evaluation results [PE: Pairwise Evaluation 
（scores range from －100 to 100） and JAE: JPO 
Adequacy Evaluation （scores range from 1 to 5）]

System
ja → ch ja → en
PE JAE PE JAE

Baseline SMT[2] － 3.5 － 3.1
Baseline NMT 23.0 4.2 21.0 3.9
NMT with technical term 
translation by SMT 30.5 4.3 29.5 4.0

NMT with PosUnk model[5] 37.0 4.5 33.5 4.1
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近年，従来の統計的機械翻訳	（Statistic	Machine	

Translation；SMT）	 に代わって，ニューラルネッ

トワーク機械翻訳	（Nerual	Machine	Translation；

NMT）	モデルが盛んに研究されている．NMT は，原言

語文を固定長ベクトルへ写像し，その固定長ベクトルか

ら目的言語文を生成するため，意味的要素の翻訳に非常

に優れており，SMT を上回る翻訳精度を達成している．

しかしながら，NMT の弱点の一つとして，扱える語彙

に限りがある点が知られている．具体的には，扱う語彙

のサイズの増加に伴い，NMT モデルの訓練および翻訳

に要する時間が増す点が課題となっている．

NMT においては，語彙辞書に含まれていない単語は

未知語トークンとして出力されるため，これが誤訳とな

る．そこで，これまでにも，NMT が扱える語彙の規模

を拡大する方式について研究が行われてきた．文献 [5]

では，訓練用対訳文における単語対応の情報に基づいて，

語彙辞書に含まれていない未知語単語を，単語間の対応

関係を特定できるトークンに置き換えた後，NMT の訓

練を行う方式を提案した．この方式では，出力文に含ま

れたトークンから未知語が対応する原言語の単語を推定

し，その訳語に置き換えることによって，NMT の出力

文において出力可能となる語彙の規模を拡大した．しか

し，文献 [5] の方式は，単語単位での語彙規模の拡大に

とどまる点が弱点であった．この弱点のため，複合語に

よって構成される専門用語が多数含まれた特許文の翻訳

精度の改善においては限界があった．

以上の背景のもとで，本稿では，特許文を対象とした

ニューラルネットワーク翻訳において，大規模専門用語

語彙に対応する方式 [3][4] について述べる．本方式にお

いては，訓練用対訳文において専門用語間の二言語対応

の情報を収集し，二言語間で対応済みの専門用語対訳対

を同一のトークンに置き換えた後，NMT の訓練を行う．

本方式による特許文の翻訳時には，専門用語以外の部分

に対しては，NMT モデルによる訳文生成がなされ，一

方，専門用語部分に対しては，SMT モデルによる翻訳

がなされる．本方式を用いない従来型の NMT モデルと，

本方式との間で翻訳精度の比較を行った結果，本方式に

よって従来型の NMT モデルの翻訳精度が改善すること

ができた．
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