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1 Introduction

Neural machine translation （NMT）, a new 

approach to solving machine translation, has 

achieved promising results[8][1]. However, a 

conventional NMT is limited when it comes 

to larger vocabularies. This is because the 

training complexity and decoding complexity 

proportionally increase with the number of 

target words. Words that are out of vocabulary 

are represented by a single unknown token in 

translations. The problem becomes more serious 

when translating patent documents, which contain 

several newly introduced technical terms. 

There have been a number of related studies 

that address the vocabulary limitation of NMT 

systems. Among them, Luong et al.[5] proposed 

annotating the occurrences of a target unknown 

word token with positional information to track 

its alignments, after which they replace the 

tokens with their translations using simple word 

dictionary lookup or identity copy. However, 

this previous approach has limitations when 

translating patent sentences. This is because 
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their method only focuses on addressing the 

problem of unknown words even though the 

words are parts of technical terms. It is obvious 

that a technical term should be considered 

as one word that comprises components that 

always have different meanings and translations 

when they are used alone.

In this article, we present a method that enables 

NMT to translate patent sentences with a large 

vocabulary of technical terms. We use an NMT 

model similar to that used by Bahdanau el al.[1], 

and train the NMT model on a bilingual corpus 

in which the technical terms are replaced with 

technical term tokens; this allows it to translate 

most of the source sentences except technical 

terms. Similar to Bahdanau et al.[1], we use it 

as a decoder to translate source sentences 

with technical term tokens and replace the 

tokens with technical term translations using 

statistical machine translation （SMT）[3][4].

2 Neural Machine Translation

NMT uses a single neural network trained jointly 

to maximize the translation performance[8][1]. 

Given a source sentence x （x＝x1, …xN） and target 

sentence y （y＝y1, …yM）, an NMT model uses a 

neural network to parameterize the conditional 

distributions

p（yz | y＜z, x）

for 1 z M. Consequently, it becomes possible 

to compute and maximize the log probability of 

the target sentence given the source sentence 

as

p（y | x）＝
M

∑
z＝1

log（yz | y＜z, x）

In this article, we use an NMT model similar to 

that used by Bahdanau et al.[1], which consists 

of an encoder of a bidirectional long short-term 

memory （LSTM）  and another LSTM as decoder. 

In the model of Bahdanau et al.[1], the encoder 

consists of forward and backward LSTMs. The 

forward LSTM reads the source sentence as 

it is ordered （from x1 to xN） and calculates a 

sequence of forward hidden states, while the 

backward LSTM reads the source sentence in 

the reverse order （from xN to x1）, resulting in 

a sequence of backward hidden states. The 

decoder then predicts target words using not 

only a recurrent hidden state and the previously 

predicted word but also a context vector as 

followings:

p（yz | y＜z, x）＝g（yz－1, sz－1, cz）

where sz－1 is an LSTM hidden state of decoder, 

and cz is a context vector computed from both 

of the forward hidden states and backward hidden 

states, for 1 z M.

3
NMT with a Large Technical Term 
Vocabulary

3.1　�NMT Training after Replacing 
Technical Term Pairs with Tokens

Figure 1 illustrates the procedure of the 

training model with parallel patent sentence 

pairs, wherein technical terms are replaced 

with technical term tokens “TT1”, “TT2”, ….1 In 

the step 1 of Figure 1, we align the source 

technical terms, which are automatically 

extracted from the source sentences, with their 

1	 In this work, we approximately regard all the 
Japanese compound nouns as source technical 
terms. These Japanese compound nouns are 
automatically extracted by simply concatenating 
a sequence of morphemes whose parts of speech 
are either nouns, prefixes, suffixes, unknown 
words, numbers, or alphabetical characters. Here, 
morpheme sequences starting or ending with 
certain prefixes are inappropriate as Japanese 
technical terms and are excluded. The sequences 
that include symbols or numbers are also excluded. 
In target side, on the other hand, we regard target 
translations of extracted Japanese compound 
nouns as target technical terms, where we do not 
regard other target phrases as technical terms.
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target translations in the target sentences.2 

As shown in the step 2 of Figure 1, in each of 

source-target parallel patent sentence pairs, 

occurrences of technical term pairs 〈tS
1, tT

1〉, 〈tS
2, 

tT
2〉, …, 〈tS

k, tT
k〉 are then replaced with technical 

term tokens 〈TT1, TT1〉, 〈TT2, TT2〉, …, 〈TTk, 

TTk〉. Technical term pairs 〈tS
1, tT

1〉, 〈tS
2, tT

2〉, …, 

〈tS
k, tT

k〉 are numbered in the order of occurrence 

of source technical terms tS
i （i＝1, 2, …, k） in 

each source sentence SS. Here, note that in all 

the parallel sentence pairs 〈SS, ST〉, technical 

term tokens “TT1”, “TT2”, … that are identical 

throughout all the parallel sentence pairs are 

used in this procedure. Therefore, for example, in 

all the source patent sentences SS, the source 

technical term tS
1 which appears earlier than 

other source technical terms in SJ is replaced 

with TT1. We then train the NMT system on a 

bilingual corpus, in which the technical term 

pairs is replaced by “TTi” （i＝1, 2, …, k） tokens 

and obtain an NMT model in which the technical 

terms are represented as technical term 

tokens.3

3.2　�NMT Decoding and SMT Technical 
Term Translation

Figure 2 illustrates the procedure for producing 

2	 Details of the procedure of identifying technical 
term pairs in the bilingual corpus can be found in 
the work of Long et al.[3].

3	 We treat the NMT system as a black box, and the 
strategy we present in this article could be applied 
to any NMT system. [7][1]

target translations via decoding the source 

sentence using the method presented in this 

aritcle. In the step 1 of Figure 2, when given an 

input source sentence, we first automatically 

extract the technical terms and replace them 

with the technical term tokens “TTi” （i＝1, 2, …, 

k）. Consequently, we have an input sentence in 

which the technical term tokens “TTi” （i＝1, 2, 

…, k） represent the positions of the technical 

terms and a list of extracted source technical 

terms. Next, as shown in the step 2-N of Figure 

2, the source sentence with technical term 

tokens is translated using the NMT model 

trained according to the procedure described 

in Section 3.1, whereas the extracted source 

technical terms are translated using an SMT 

phrase translation table in the step 2-S of 

Figure 2.4 Finally, in the step 3, we replace the 

technical term tokens “TTi” （i＝1, 2, …, k） of the 

sentence translation with SMT the technical 

term translations.

4	 We use the translation with the highest probability 
in the phrase translation table. When an input 
source technical term has multiple translations 
with the same highest probability or has no 
translation in the phrase translation table, we 
apply a compositional translation generation 
approach, wherein target translation is generated 
compositionally from the constituents of source 
technical terms.

Figure 1　NMT training after replacing technical term pairs with tokens “TT1”, “TT2”, ⋯

〔3〕 

sequence of forward hidden states, while the 

backward LSTM reads the source sentence in the 
reverse order (from ��  to �� ) , resulting in a 
sequence of backward hidden states. The decoder 
then predicts target words using not only a 
recurrent hidden state and the previously 
predicted word but also a context vector as 
followings: 

��������� �	� � ������� ����� ��� 
where ���� is an LSTM hidden state of decoder, 
and �� is a context vector computed from both of 
the forward hidden states and backward hidden 
states, for � � � � �. 
 
3. NMT with a Large Technical Term Vocabulary 
3.1 NMT Training after Replacing Technical Term 
Pairs with Tokens 

Figure 1 illustrates the procedure of the 
training model with parallel patent sentence 
pairs, wherein technical terms are replaced with 
technical term tokens “���”, “���”, ⋯.1 In the step 
                                                  
1 In this work, we approximately regard all the Japanese 
compound nouns as source technical terms. These Japanese 
compound nouns are automatically extracted by simply 

1 of Figure 1, we align the source technical terms, 

which are automatically extracted from the source 
sentences, with their target translations in the 
target sentences. 2  As shown in the step 2 of 
Figure 1, in each of source-target parallel patent 
sentence pairs, occurrences of technical term 
pairs 〈���� ���〉,	〈���� ���〉, ⋯, 〈���� ���〉 are then replaced 
with technical term tokens 〈���� ���〉, 〈���� ���〉, 
⋯, 〈���� ���〉. Technical term pairs 〈���� ���〉,	〈���� ���〉, 
⋯ , 〈���� ���〉  are numbered in the order of 
occurrence of source technical terms ��� 	�� �
����⋯ � �� in each source sentence ��. Here, note 
that in all the parallel sentence pairs 〈��� ��〉 , 
technical term tokens “���”, “���”, ⋯ that are 
identical throughout all the parallel sentence 

                                                                                
concatenating a sequence of morphemes whose parts of speech 
are either nouns, prefixes, suffixes, unknown words, numbers, 
or alphabetical characters. Here, morpheme sequences 
starting or ending with certain prefixes are inappropriate as 
Japanese technical terms and are excluded. The sequences 
that include symbols or numbers are also excluded. In target 
side, on the other hand, we regard target translations of 
extracted Japanese compound nouns as target technical terms, 
where we do not regard other target phrases as technical 
terms. 

2 Details of the procedure of identifying technical term pairs 
in the bilingual corpus can be found in the work of Long et 
al.[3]. 

Japanese sentence:
cmac/ユニット/312/は/信号/を/ブリッジ/インタフェース

/388/に/提供/する/。

Chinese sentence:

cmac/单元/312/将/信号/提供/给/桥架/接口/388/。

Japanese sentence with technical 
term tokens “TT1”, “TT2” :
TT1  /312/は/信号/を/TT2/388/に/提供/する/。

Chinese sentence with tec hnical
ter m tokens “TT1”, “TT2” :
TT1 /312/将/信号/提供/给/TT2 /388/。

NMT translation 
model (with 

technical term tokens 
“TT1”, “TT2”, …)

(cmac unit 312 provides a signal to the bridge interface 388.) (TT1 312 provides a signal to the TT2 388.)

1. aligning technical term 
pairs by SMT translation model 

2.  replacing each aligned technical 
term pair with an identical technical‐

term token “TTi” (i = 1, 2, …)

3.  training 
by NMT

 
Figure 1 NMT training after replacing technical term pairs with tokens “���”, “���”, ⋯ 
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4 Evaluation

4.1　Patent Documents
Japanese-Chinese parallel patent documents 

were collected from the Japanese patent 

documents published by the Japanese Patent 

Office （JPO） during 2004-2012 and the 

Chinese patent documents published by the 

State Intellectual Property Office of the People's 

Republic of China （SIPO） during 2005-2010. 

From the collected documents, we extracted 

312,492 patent families, and the method of 

Uchiyama and Isahara[9] was applied5 to the 

text of the extracted patent families to align 

the Japanese and Chinese sentences. The 

Japanese sentences were segmented into a 

sequence of morphemes using the Japanese 

morphological analyzer MeCab6 with the morpheme 

lexicon IPAdic,7 and the Chinese sentences were 

segmented into a sequence of words using 

the Chinese morphological analyzer Stanford 

Word Segment[10] trained using the Chinese 

Penn Treebank. In this study, Japanese-Chinese 

parallel patent sentence pairs were ordered in 

descending order of sentence-alignment score 

and we used the topmost 2.8M pairs, whose 

5	 Herein, we used a Japanese-Chinese translation 
lexicon comprising around 170,000 Chinese 
entries.

6	 http://mecab.sourceforge.net/

7	 http://sourceforge.jp/projects/ipadic/

Japanese sentences contain fewer than 40 

morphemes and Chinese sentences contain 

fewer than 40 words.8

Japanese-English patent documents are 

provided in the NTCIR-7 workshop[11], which 

are collected from the 10 years of unexamined 

Japanese patent applications published by the 

Japanese Patent Office （JPO） and the 10 years 

patent grant data published by the U.S. Patent 

Trademark Office （USPTO） in 1993-2000. 

The numbers of documents are approximately 

3,500,000 for Japanese and 1,300,000 for 

English. From these document sets, patent 

families are automatically extracted and the fields 

of “Background of the Invention” and “Detailed 

Description of the Preferred Embodiments” 

are selected. Then, the method of Uchiyama 

and Isahara[9] is applied to the text of those 

fields, and Japanese and English sentences 

are aligned. The Japanese sentences were 

segmented into a sequence of morphemes 

using the Japanese morphological analyzer 

MeCab with the morpheme lexicon IPAdic. 

Similar to the case of Japanese-Chinese patent 

8	 It is expected that our NMT model can improve 
the baseline NMT without our technique when 
translating longer sentences that contain more 
than 40 morphemes / words. It is because the 
approach of replacing phrases with tokens also 
shortens the input sentences, expected to 
contribute to solving the weakness of NMT model 
when translating long sentences.

Figure 2　NMT decoding with technical term tokens “TTi” （i＝1, 2, ⋯, k） and SMT technical term

〔4〕 

pairs are used in this procedure. Therefore, for 
example, in all the source patent sentences , 
the source technical term  which appears 
earlier than other source technical terms in  is 
replaced with . We then train the NMT system 
on a bilingual corpus, in which the technical term 
pairs is replaced by “ ”  tokens 
and obtain an NMT model in which the technical 
terms are represented as technical term tokens.3 
 
3.2 NMT Decoding and SMT Technical Term 
Translation 
Figure 2 illustrates the procedure for producing 
target translations via decoding the source 
sentence using the method presented in this 
aritcle. In the step 1 of Figure 2, when given an 
input source sentence, we first automatically 
extract the technical terms and replace them with 
the technical term tokens “ ” . 

                                                  
3 We treat the NMT system as a black box, and the strategy 

we present in this article could be applied to any NMT system. 
[7][1] 

Consequently, we have an input sentence in which 
the technical term tokens “ ”  
represent the positions of the technical terms and 
a list of extracted source technical terms. Next, as 
shown in the step 2-N of Figure 2, the source 
sentence with technical term tokens is translated 
using the NMT model trained according to the 
procedure described in Section 3.1, whereas the 
extracted source technical terms are translated 
using an SMT phrase translation table in the step 
2-S of Figure 2.4 Finally, in the step 3, we replace 
the technical term tokens “ ”  of 
the sentence translation with SMT the technical 
term translations. 
 
4. Evaluation 
4.1 Patent Documents 
                                                  

4 We use the translation with the highest probability in the 
phrase translation table. When an input source technical term 
has multiple translations with the same highest probability or 
has no translation in the phrase translation table, we apply a 
compositional translation generation approach, wherein target 
translation is generated compositionally from the constituents 
of source technical terms. 

input Japanese sentence:
コンタクト/プラグ/9/d/と/

素子/分離/絶縁/膜/2/の/
間/に/は/金属/膜/14/が/
介在/し/て/いる 。

(The metal film 14 is interposed 
between the contact plug 9d and the 
element isolation insulating film 2.)

2-S.  technical 
term translation

by phrase 
translation 
table of SMT

output Chinese  translation:

在/接触/插头/9/d/和/
元件/分离/绝缘/膜/2/
之间/夹/着/金属膜/14/。

1. replacing them with 
technical 

term tokens 
“TT1”, “TT2”, … 

TT1  : コンタクト/プラグ

TT2  :素子/分離/絶縁 /膜

TT3  :金属/膜
(metal film) 

(contact plug)

(element isolation insulating film) 

input Japanese sentence 
with technical term tokens 
“TT1”, “TT2”, … :
TT1 /9/d/と/ TT2  /2/の/間/に/は
/ TT3  /14/が/介在/し/て/いる 。

Chinese translation with 
Technical term tokens 
“TT1”, “TT2”, … :

(The TT3 14 is interposed between the TT1 
9d and the TT2 2.)

在/TT1 /9/d/和/TT2 /2/之
间/夹/着/TT3 /14/。

2-N.  decoding by 
NMT translation 
model (with 

technical term tokens 
“TT1”, “TT2”, … )

extracted Japanese technical terms

TT1  : 接触/插头

TT2  : 素子/分離/絶縁/膜

TT3  : 金属膜

Chinese translation of technical  terms

3. replacing 
technical term 
tokens “TT1”, 
“TT2”, … with 
technical term 
translation by 

SMT

 

Figure 2 NMT decoding with technical term tokens “ ”  and SMT technical term 
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documents, in this study, out of the provided 

1.8M Japanese-English parallel sentences, 

1.1M parallel sentences whose Japanese 

sentences contain fewer than 40 morphemes 

and English sentences contain fewer than 40 

words are used.

4.2　Training and Test Sets
We evaluated the effectiveness of the NMT 

model presented in this article at translating 

parallel patent sentences described in Section 

4.1. Among the selected parallel sentence 

pairs, we randomly extracted 1,000 sentence 

pairs for the test set and 1,000 sentence pairs 

for the validation set; the remaining sentence 

pairs were used for the training set. Table 1 

shows statistics of the datasets. 

Table 1　Statistics of datasets

training
set

validation
set

test
set

ja ↔ ch 2,877,178 1,000 1,000
ja ↔ en 1,167,198 1,000 1,000

4.3　Training Details
For the training of the SMT model, including 

the word alignment and the phrase translation 

table, we used Moses[2], a toolkit for phrase-

based SMT models. We trained the SMT 

model on the training set and tuned it with the 

validation set.

For the training of the NMT model, our training 

procedure and hyperparameter choices were 

similar to those of Bahdanau et al.[1]. The 

encoder consists of forward and backward deep 

LSTM neural networks each consisting of three 

layers, with 512 cells in each layer. The decoder 

is a three-layer deep LSTM with 512 cells in 

each layer. Both the source vocabulary and 

the target vocabulary are limited to the 40K 

most-frequently used morphemes/words in the 

training set. The size of the word embedding 

was set to 512. We ensured that all sentences 

in a minibatch were roughly the same length. 

Further training details are given below:

（1）	We set the size of a minibatch to 128.

（2）	All of the LSTMʼs parameter were initialized 

with a uniform distribution ranging between 

－0.06 and 0.06.

（3）	We used the stochastic gradient descent, 

beginning at a fixed learning rate of 1. We 

trained our model for a total of 10 epochs, 

and we began to halve the learning rate 

every epoch after the first seven epochs.

（4）	Similar to Sutskever et al.[8], we rescaled the 

normalized gradient to ensure that its norm 

does not exceed 5.

We trained the NMT model on the training set. 

The training time was around two days when 

using the described parameters on a 1-GPU 

machine.

4.4　Evaluation Results
We calculated automatic evaluation scores 

for the translation results using a metric 

called BLEU[7]. As shown in Table 2, we report 

the evaluation scores, on the basis of the 

translations by Moses[2], as the baseline SMT.9 

and the scores based on translations produced 

by the equivalent NMT system without our 

approach as the baseline NMT. As shown in 

Table 2, our NMT systems clearly improve the 

translation quality when compared with the 

baselines. When compared with the baseline 

SMT, the performance gain of our system is 

approximately 6.1 BLEU points when translating 

Japanese into Chinese and 8.4 BLEU when 

translating Japanese into English. When compared 

with the result of decoding with the baseline 

NMT, our NMT system achieved performance 

gains of 2.1 BLEU points when translating 

9	 We train the SMT system on the same training set 
and tune it with the validation set.
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Japanese into Chinese, and 0.8 BLEU points 

when translating Japanese into English.

Furthermore, we quantitatively compared our 

study with the work of Luong et al.[5]. As the 

result shown in Table 2, compared with the NMT 

system with PosUnk model that is proposed 

as the best model by Luong et al.[5], our NMT 

system achieves performance gains of 1.7 

BLEU points when translating Japanese into 

Chinese and 0.6 BLEU points when translating 

Japanese into English.

In this study, we also conducted two types 

of human evaluation according to Nakazawa 

et al.[6]: pairwise evaluation and JPO adequacy 

evaluation.10 Table 3 shows the results of the 

human evaluation for the baseline SMT, the 

baseline NMT, the NMT system with PosUnk[5] 

and our NMT system. We observed that our 

systems achieved the best performance for 

both pairwise evaluation and JPO adequacy 

evaluation.

10	https://www.jpo.go.jp/shiryou/toushin/chousa/
pdf/tokkyohonyaku_hyouka/01.pdf  （in Japanese）

5 Conclusion

In this article, we presented an NMT method 

capable of translating patent sentences with a 

large vocabulary of technical terms by training 

an NMT system on a bilingual corpus, wherein 

technical terms are replaced with technical term 

tokens. For the translation of Japanese patent 

sentences, we observed that our NMT system 

performs better than the phrase-based SMT 

system as well as the equivalent NMT system 

without our approach. 

Table 2　Automatic evaluation results （BLEU）

System ja → ch ja → en
Baseline SMT[2] 52.5 32.3
Baseline NMT 56.5 39.9
NMT with PosUnk model[5] 56.9 40.1
NMT with technical term
translation by SMT 58.6 40.7

Table 3　�Human evaluation results [PE: Pairwise Evaluation 
（scores range from －100 to 100） and JAE: JPO 
Adequacy Evaluation （scores range from 1 to 5）]

System
ja → ch ja → en
PE JAE PE JAE

Baseline SMT[2] － 3.5 － 3.1
Baseline NMT 23.0 4.2 21.0 3.9
NMT with technical term 
translation by SMT 30.5 4.3 29.5 4.0

NMT with PosUnk model[5] 37.0 4.5 33.5 4.1
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近年，従来の統計的機械翻訳 （Statistic Machine 

Translation；SMT） に代わって，ニューラルネッ

トワーク機械翻訳 （Nerual Machine Translation；

NMT） モデルが盛んに研究されている．NMT は，原言

語文を固定長ベクトルへ写像し，その固定長ベクトルか

ら目的言語文を生成するため，意味的要素の翻訳に非常

に優れており，SMT を上回る翻訳精度を達成している．

しかしながら，NMT の弱点の一つとして，扱える語彙

に限りがある点が知られている．具体的には，扱う語彙

のサイズの増加に伴い，NMT モデルの訓練および翻訳

に要する時間が増す点が課題となっている．

NMT においては，語彙辞書に含まれていない単語は

未知語トークンとして出力されるため，これが誤訳とな

る．そこで，これまでにも，NMT が扱える語彙の規模

を拡大する方式について研究が行われてきた．文献 [5]

では，訓練用対訳文における単語対応の情報に基づいて，

語彙辞書に含まれていない未知語単語を，単語間の対応

関係を特定できるトークンに置き換えた後，NMT の訓

練を行う方式を提案した．この方式では，出力文に含ま

れたトークンから未知語が対応する原言語の単語を推定

し，その訳語に置き換えることによって，NMT の出力

文において出力可能となる語彙の規模を拡大した．しか

し，文献 [5] の方式は，単語単位での語彙規模の拡大に

とどまる点が弱点であった．この弱点のため，複合語に

よって構成される専門用語が多数含まれた特許文の翻訳

精度の改善においては限界があった．

以上の背景のもとで，本稿では，特許文を対象とした

ニューラルネットワーク翻訳において，大規模専門用語

語彙に対応する方式 [3][4] について述べる．本方式にお

いては，訓練用対訳文において専門用語間の二言語対応

の情報を収集し，二言語間で対応済みの専門用語対訳対

を同一のトークンに置き換えた後，NMT の訓練を行う．

本方式による特許文の翻訳時には，専門用語以外の部分

に対しては，NMT モデルによる訳文生成がなされ，一

方，専門用語部分に対しては，SMT モデルによる翻訳

がなされる．本方式を用いない従来型の NMT モデルと，

本方式との間で翻訳精度の比較を行った結果，本方式に

よって従来型の NMT モデルの翻訳精度が改善すること

ができた．
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